This work is a contribution of theoretical chemistry to the knowledge of 2‑thioxanthine's properties. Its aim first consists in checking the chemistry's results related to the exploitation of semi-empirical methods; it provides theoretical data on the acidity of 2‑thioxanthine tautomers. To do this, the DFT method with the B3LYP functional, associated with the 6‑311+G(d, p) basis set was used. The aqueous phase was modelled with the Polarizable Continuum Model (PCM). The results show that in gas and aqueous phases 2‑thioxanthine can exist as a mixture of four tautomers 2TX(1,3,7), 2TXX(1,3,9), 2TX(1,7,10) and 2TX(1,9,10). The relative stability decreases in the order 2TX(1,3,7)> 2TX(1,3,9)> 2TX(1,9,10)> 2TX(1,7,10). This work establishes that the tautomer 2TX(1,9,10) comes from the 2TX(1,3,7) via the 2TX(1,3,9) one. It demonstrates that the acidity of the most stable tautomer’s nitrogen 2TX(1,3,7), decreases in the order 7> 3> 1 in gas phase and in the order 3> 7>1 in aqueous phase. It provides data to elucidate the mechanisms to understand biological activities of 2‑thioxanthine.
Published in | International Journal of Computational and Theoretical Chemistry (Volume 7, Issue 1) |
DOI | 10.11648/j.ijctc.20190701.17 |
Page(s) | 49-55 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
2-Thioxanthine, Stability, Tautomerism, Acidity, B3LYP
[1] | J. Carbon, H. David, M. H. Studier, Science 1968, 161, 1146. |
[2] | W. J. Burrows, D. J. Armstrong, F. Skoog, S. M. Hecht, J. T. A. Boyle, N. J. Leonard, J. Occolowitz, Science 1968, 161, 691. |
[3] | M. Ono, M. Kawakami, J. Biochem. 1977, 81, 1247. |
[4] | W. Saenge, Soringer, New York, 1984. |
[5] | S. E. kalyoubi, F. Agili, S. Youssif, Molecules 2015, 20, 19263–19276. |
[6] | A. Biela1, F. Coste, F. Culard, M. Guerin, S. Goffinont, K. Gasteiger, J. Ciesla, A. Winczura, Z. Kazimierczuk, D. Gasparutto, T. Carell, B. Tudek, B. Castaing, Nucleic Acids Res. 2014, 1–14. |
[7] | S. L. Maiocchi, J. C. Morris, M. D. Rees, S. R. Thomas, Biochemical Pharmacology 2017, 135, 90–115. |
[8] | C. J. Weeramange, C. M. Binns, Ch. Chenc, R. J. Rafferty, Journal of Pharmaceutical and Biomedical Analysis 2018, 151, 106–115. |
[9] | K. Pavelcova, L. Petru, J. Krijt, Toxicology and Applied Pharmacology 2018, 353, 102-108. |
[10] | S. Deswal, A. Srivastava, Journal of Clinical and Experimental Hepatology 2017, 7(1), 55-62. |
[11] | Z. Wang, T. M. Rana, Biochemistry 1996, 32, 6491–6499. |
[12] | D. J. Darensbourg, B. J. Frost, K. A. Derecskei, J. H. Reibenspies, Inorg. Chem. 1999, 38, 4715–4723. |
[13] | A. Dafali, B. Hammouti, R. Mokhlisse, S. Kertit, Corrosion Sci. 2003, 45, 1619–1630. |
[14] | O. H. Nielsen, B. Vainer, M. J. Rask, Aliment. Pharmacol. Ther 2001, 15, 1699–1708. |
[15] | C. E. Neunert, G. R. Buchanan, Pediatr. Blood. Cancer. 2009, 52, 5–6. |
[16] | M. Raj, R. N. Goyal Sensors and Actuators B 250 2017, 552–562. |
[17] | E. Kafer Mutation Research. 1975, 31, 347-64. |
[18] | Scott BR, Kafer E, Dom GL, et al. Mutation Research. 1982; 98: 49-94. |
[19] | H. G. Mautner, G. Bergson, Acta. Chem. Scand. 1963, 17, 1694. |
[20] | L. M. Twanmoh Jr., H. B. Wood, J. S. Driscoll, J. Heterocycl. Chem. 1973, 10, 187. |
[21] | P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 546, 163-73. |
[22] | P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 114, 1582-88. |
[23] | P. U. Civcir. Journal of Molecular Structure (Theochem) 2001; 572, 5-13. |
[24] | P. U. Civcir, Journal of Molecular Structure-(Theochem) 2001; 545, 7-15. |
[25] | P. U. Civcir, Journal of Molecular Structure (Theochem) 2001; 536, 161-171. |
[26] | B. Z. Li, Acta. Phys. Chim. Sin. 2004, 20, 1455–1458. |
[27] | A. B. Assoma, A. L Bede, M. Kone et al. European Journal of Scientific Research. 2010, 44, 2, 337-354 |
[28] | A. B. Assoma, A. L. Bede, K. D. YAPO et al, European Journal of Scientific Research. 2018; 149, 2, 148-152. |
[29] | BA Assoma, LA Bede, RB N’Guessan, S Kone, SE Bamba and TY N’Guessan, J Curr Chem Pharm Sc. 2018; 8(2):114. |
[30] | A. D. Becke The Journal of Chemical Physics. 1997, 107, 8554-60. |
[31] | M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian Inc. Pittsburgh. 2003. |
[32] | J. Tomasi, M. Persico Chemical Reviews. 1994, 94, 2027-94. |
[33] | E. Canses, B. Mennucci, J. Tomasi, The Journal of Chemical Physics. 1997, 107, 3032-41. |
[34] | P. G. Mezey, J. J. Ladik, Theor Chim Acta. 1979; 52: 129. |
[35] | P. G. Mezey, J. J. Ladik,, M. Barry, Theor Chim Acta. 1979; 54: 251. |
[36] | M. Remko, J Phys Chem A. 2003, 107, 720-25. |
[37] | K. N. Rogstad, Y. H. Jang, L. C. Sowers and W. A. Goddard, Chem. Res. Toxicol. 2003, 16, 1455-1462 |
[38] | Y. H. Jang, W. A Goddard, K. T. Noyes, L. C. Sowers, S. Hwang and D. S. Chung, J. Phys. Chem. B 2003, 107, 344-357. |
APA Style
Assoma Amon Benjamine, Koné Mawa, Alao Latifatou Laye, Bede Affoué Lucie, Koné Soleymane, et al. (2019). Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases. International Journal of Computational and Theoretical Chemistry, 7(1), 49-55. https://doi.org/10.11648/j.ijctc.20190701.17
ACS Style
Assoma Amon Benjamine; Koné Mawa; Alao Latifatou Laye; Bede Affoué Lucie; Koné Soleymane, et al. Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases. Int. J. Comput. Theor. Chem. 2019, 7(1), 49-55. doi: 10.11648/j.ijctc.20190701.17
AMA Style
Assoma Amon Benjamine, Koné Mawa, Alao Latifatou Laye, Bede Affoué Lucie, Koné Soleymane, et al. Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases. Int J Comput Theor Chem. 2019;7(1):49-55. doi: 10.11648/j.ijctc.20190701.17
@article{10.11648/j.ijctc.20190701.17, author = {Assoma Amon Benjamine and Koné Mawa and Alao Latifatou Laye and Bede Affoué Lucie and Koné Soleymane and N’Guessan Boka Robert and Bamba El Hadji Sawaliho and N’guessan Yao Thomas}, title = {Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases}, journal = {International Journal of Computational and Theoretical Chemistry}, volume = {7}, number = {1}, pages = {49-55}, doi = {10.11648/j.ijctc.20190701.17}, url = {https://doi.org/10.11648/j.ijctc.20190701.17}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijctc.20190701.17}, abstract = {This work is a contribution of theoretical chemistry to the knowledge of 2‑thioxanthine's properties. Its aim first consists in checking the chemistry's results related to the exploitation of semi-empirical methods; it provides theoretical data on the acidity of 2‑thioxanthine tautomers. To do this, the DFT method with the B3LYP functional, associated with the 6‑311+G(d, p) basis set was used. The aqueous phase was modelled with the Polarizable Continuum Model (PCM). The results show that in gas and aqueous phases 2‑thioxanthine can exist as a mixture of four tautomers 2TX(1,3,7), 2TXX(1,3,9), 2TX(1,7,10) and 2TX(1,9,10). The relative stability decreases in the order 2TX(1,3,7)> 2TX(1,3,9)> 2TX(1,9,10)> 2TX(1,7,10). This work establishes that the tautomer 2TX(1,9,10) comes from the 2TX(1,3,7) via the 2TX(1,3,9) one. It demonstrates that the acidity of the most stable tautomer’s nitrogen 2TX(1,3,7), decreases in the order 7> 3> 1 in gas phase and in the order 3> 7>1 in aqueous phase. It provides data to elucidate the mechanisms to understand biological activities of 2‑thioxanthine.}, year = {2019} }
TY - JOUR T1 - Density Functional Theory (B3LYP/6-311+G(d, p)) Study of Stability, Tautomerism and Acidity of 2-Thioxanthine in Gas and Aqueous Phases AU - Assoma Amon Benjamine AU - Koné Mawa AU - Alao Latifatou Laye AU - Bede Affoué Lucie AU - Koné Soleymane AU - N’Guessan Boka Robert AU - Bamba El Hadji Sawaliho AU - N’guessan Yao Thomas Y1 - 2019/04/03 PY - 2019 N1 - https://doi.org/10.11648/j.ijctc.20190701.17 DO - 10.11648/j.ijctc.20190701.17 T2 - International Journal of Computational and Theoretical Chemistry JF - International Journal of Computational and Theoretical Chemistry JO - International Journal of Computational and Theoretical Chemistry SP - 49 EP - 55 PB - Science Publishing Group SN - 2376-7308 UR - https://doi.org/10.11648/j.ijctc.20190701.17 AB - This work is a contribution of theoretical chemistry to the knowledge of 2‑thioxanthine's properties. Its aim first consists in checking the chemistry's results related to the exploitation of semi-empirical methods; it provides theoretical data on the acidity of 2‑thioxanthine tautomers. To do this, the DFT method with the B3LYP functional, associated with the 6‑311+G(d, p) basis set was used. The aqueous phase was modelled with the Polarizable Continuum Model (PCM). The results show that in gas and aqueous phases 2‑thioxanthine can exist as a mixture of four tautomers 2TX(1,3,7), 2TXX(1,3,9), 2TX(1,7,10) and 2TX(1,9,10). The relative stability decreases in the order 2TX(1,3,7)> 2TX(1,3,9)> 2TX(1,9,10)> 2TX(1,7,10). This work establishes that the tautomer 2TX(1,9,10) comes from the 2TX(1,3,7) via the 2TX(1,3,9) one. It demonstrates that the acidity of the most stable tautomer’s nitrogen 2TX(1,3,7), decreases in the order 7> 3> 1 in gas phase and in the order 3> 7>1 in aqueous phase. It provides data to elucidate the mechanisms to understand biological activities of 2‑thioxanthine. VL - 7 IS - 1 ER -