| Peer-Reviewed

Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K

Received: 18 August 2020     Accepted: 18 September 2020     Published: 12 October 2020
Views:       Downloads:
Abstract

This paper concern the calculation of equilibrium composition of plasma mixture Air-Water vapor and copper vapor in temperatures range 1000K to 20000 K. The plasma is suposed to be in local thermodynamic equilibrium. We used Gibbs free energy minimization method to access the different numerical densities of chemical species as a function of temperature. This data are very important to calculate thermodynamic properties, transport coefficients and modeling electrical arc in circuit breakers. The result shows that the influence of metallic copper vapor is important on equilibrium composition of plasma. In particular the densities of electron in the plasma increase with the percentage of copper vapor for the temperature inferior to 17000K. The increasing of electron densities increase electrical conductivity of plasma and limit the performance of circuit breakers. Also the electrical neutrality is made mainly between electron (e-) and Cu+ in low temperature (T < 12000K). We are studying in particular the evolution of the densities of the main chemical species created in this plasma as a function of pressure. We choose four values of pressure (1 atm, 5 atm, 10 atm and 15 atm). The results obtained shows an increasing of chemical densities with the pressure in the mixture in conformity at Dalton's Law. the increasing of the pressure in the plasma retard chemical reactions because it disadvantages the dislocations that constitute dissociation and ionization reactions in the plasma.

Published in American Journal of Nano Research and Applications (Volume 8, Issue 3)
DOI 10.11648/j.nano.20200803.13
Page(s) 50-57
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Plasma, Equilibrium Composition, Gibbs Free Energy, Copper, Electrical Neutrality

References
[1] P. André, M. A. Courty, A. K. Kagoné, Z. Koalaga, N. Kohio, F. Zougmoré: Calcul de la composition chimique dans un plasma issu de mélanges de PTFE, d’air, de cuivre et de vapeur d’eau dans le cadre d’appareillages de coupure électrique à air Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l'Environnement. vol. 2, n°1, 3, (2016) DOI: http://dx.doi.org/10.18145/jitipee.v2i1.128.g70.
[2] Abdoul Karim Kagoné, Zacharie Koalaga et François Zougmoré: Calcul de composition de plasmas thermiques d’arc électrique de mélanges d’air et de vapeur d’eau. Rev. can. phys. 90: 211–221 (2012) doi: 10.1139/P2012-004.
[3] Pascal André, Abdoul Karim Kagoné, Zackarie Koalaga, Nièssan Kohio et François Zougmoré. Contribution à l’étude de la conductivité thermique d’un plasma d’air. Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l'Environnement. (2019) DOI: http://dx.doi.org/10.18145/jitipee.v5i2.222
[4] Yi Wu, Zhexin Chen, Fei yang, Yann Cressault, Anthony B Murphy, Anxiang Guo, Zirui Liu, Mingzhe Rongand Hao Sun: Two-temperature thermodynamic and transport properties of SF6–Cu plasmas J. Phys. D: Appl. Phys. 48 (2015) 415205 (25pp) doi: 10.1088/0022-3727/48/41/415205.
[5] KOHIO Niéssan, KAGONÉ Abdoul Karim, KOALAGA Zacharie, ZOUGMORÉ François Composition of Air-Water Vapor Mixtures at Low Temperatures. International Journal of Advanced Research in Science Engineering and Technology. Vol. 1, Issue 5, December (2014).
[6] Kohio Nièssan, Kagoné Abdoul Karim, Yaguibou Wêpari Charles, Koalaga Zacharie, Zougmoré François: Water Vapor Influence on Thermodynamic Properties of Air-water Vapor Mixtures Plasmas at Low Temperatures: International Journal of Physics, (2019), Vol. 7, No. 3, 66-72 DOI: 10.12691/ijp-7-3-1.
[7] P. André and Z. Koalaga, “Composition of a thermal plasma formed from PTFE with copper in non-oxidant atmosphere. Part II: Comparison of a test case with nitrogen”, High Temperature Material Processes 14, 3 (2010) 289.
[8] Weizong Wang Mingzhe Rong Yi Wu. Transport Coefficients of High Temperature SF6–He Mixtures Used in Switching Applications as an Alternative to Pure SF6. Plasma Chem Plasma Process (2014). DOI: 10.1007/s11090-014-9543-3.
[9] Wêpari Charles Yaguibou, Niessan Kohio, Abdoul Karim Kagone and Zacharie Koalaga: Impact of Aerosol on Transport Coefficients of Air Thermal Plasmas in Circuit Breakers. (2018) Volume No. 7, Issue No. 4, pp: 43-47. DOI: 10.5958/2319-6890.2018.00094.6.
[10] P. André, J. Aubreton, S. Clain, M. Dudeck, E. Duffour, M. F. Elchinger, B. Izrar, D. Rochette, R. Touzani and D. Vacher. Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres. Eur. Phys. J. D 57, 227-234 (2010). DOI: 10.1140/epjd/e2010-00036-5.
[11] D. Rochette, W. Bussière and P. André. Composition enthalpy and Vaporisation temperature calculation of Ag-SiO2 plasma with air in the temperature range from 1000 K to 6000K and for pressure included between 150 bars. Plasma chemistry and plasma processing, Vol. 24, No. 3, Septembre (2004).
[12] H. Hingana. Contribution à l’étude des propriétés des plasmas a deux températures: application à l’argon et l'air. Thèse de doctorat, Université Toulouse III-Paul Sabatier (France), Décembre (2010).
[13] Wêpari Charles Yaguibou, Nièssan Kohio, Abdoul Karim Kagoné, Zacharie Koalaga et François Zougmoré: Influence des aérosols sur la composition à l’équilibre d’un plasma d’air vol. 4, (2018) DOI: http://dx.doi.org/10.18145/jitipee.v4i1.167.
[14] N. KOHIO, A. K. KAGONÉ, Z. KOALAGA, F. ZOUGMORÉ. Composition of Air -Water Vapor Mixtures at Low Temperatures (2014). International Journal of Advanced Research in Science, Engineering and Technology. Vol. 1, Issue 5.
[15] P. André, L. Brunet, W. Bussière, J. Caillard, J. M. Lombard, and J. P. Picard. Transport coefficients of plasmas consisting of insulator vapours. Application to PE, POM, PMMA PA66 and PC. Eur. Phys. J. Appl. Phys. 25, 169-182 (2004). DOI: 10.1051/epjap: 2004007.
[16] P. André, J. Aubreton, S. Clain, M. Dudeck, E. Duffour, M. F. Elchinger, B. Izrar, D. Rochette, R. Touzani and D. Vacher. Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres (2010). Eur. Phys. J. D 57, 227-234. DOI: 10.1140/epjd/e2010-00036-5.
[17] Yulianta Siregar, Yasunori Tanaka, Yoshihiko Uesugi, Tatsuo Ishijima: Numérical parametric Investigationon the Temperature Distribution in Ar/O2 Induction Thermal Plasma the Ti power Injection: Inclusion of Particule Evaporation; IEEJ Trans (2020); 15: 12–2 DOI: 10.1002/tee.23022.
[18] F. Bendjebbar, P. Andre, M. Bnebakkar, D. Rochette, S. Flazi, D. Vacher. Plasma Formed in Argon, Acid Nitric and Water Used in Industrial ICP Torches. Plasma Sciences and Technology, Vol. 14, No. 8, Aug. (2012).
[19] Z Koalaga. Composition d'équilibre des plasmas de H2, O2 et N2 hors équilibre thermique. Canadian Journal of Physics (2003). https://doi.org/10.1139/p03-075.
[20] Yi Wu, Chunlin Wang, Hao Sun, Anthony B Murphy, Mingzhe Rong, Fei Yang, Zhexin Chen, Chunpin Niuand Xiaohua Wang: Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients J. Phys. D: Appl. Phys. 51, (2018).
[21] M. W Chase. JR, C. A. Davies. JR Downey, JR. DJ. Frurip, R. A, Mcdanold, A. N. Syverud. Janat thermodynamic table third edition. J. Phys and Chem. Ref. Data. Vol. 14; 1985.
[22] Yann CRESSAULT propriétés des plasmas thermiques dans des mélanges argon-hydrogène-cuivre. Thèse de doctorat UNIVERSITE PAUL SABATIER TOULOUSE III. novembre (2001).
Cite This Article
  • APA Style

    Kohio Nièssan, Kagoné Abdoul Karim, Yaguibou Wêpari Charles, Koalaga Zacharie, Zougmoré François. (2020). Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K. American Journal of Nano Research and Applications, 8(3), 50-57. https://doi.org/10.11648/j.nano.20200803.13

    Copy | Download

    ACS Style

    Kohio Nièssan; Kagoné Abdoul Karim; Yaguibou Wêpari Charles; Koalaga Zacharie; Zougmoré François. Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K. Am. J. Nano Res. Appl. 2020, 8(3), 50-57. doi: 10.11648/j.nano.20200803.13

    Copy | Download

    AMA Style

    Kohio Nièssan, Kagoné Abdoul Karim, Yaguibou Wêpari Charles, Koalaga Zacharie, Zougmoré François. Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K. Am J Nano Res Appl. 2020;8(3):50-57. doi: 10.11648/j.nano.20200803.13

    Copy | Download

  • @article{10.11648/j.nano.20200803.13,
      author = {Kohio Nièssan and Kagoné Abdoul Karim and Yaguibou Wêpari Charles and Koalaga Zacharie and Zougmoré François},
      title = {Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K},
      journal = {American Journal of Nano Research and Applications},
      volume = {8},
      number = {3},
      pages = {50-57},
      doi = {10.11648/j.nano.20200803.13},
      url = {https://doi.org/10.11648/j.nano.20200803.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20200803.13},
      abstract = {This paper concern the calculation of equilibrium composition of plasma mixture Air-Water vapor and copper vapor in temperatures range 1000K to 20000 K. The plasma is suposed to be in local thermodynamic equilibrium. We used Gibbs free energy minimization method to access the different numerical densities of chemical species as a function of temperature. This data are very important to calculate thermodynamic properties, transport coefficients and modeling electrical arc in circuit breakers. The result shows that the influence of metallic copper vapor is important on equilibrium composition of plasma. In particular the densities of electron in the plasma increase with the percentage of copper vapor for the temperature inferior to 17000K. The increasing of electron densities increase electrical conductivity of plasma and limit the performance of circuit breakers. Also the electrical neutrality is made mainly between electron (e-) and Cu+ in low temperature (T < 12000K). We are studying in particular the evolution of the densities of the main chemical species created in this plasma as a function of pressure. We choose four values of pressure (1 atm, 5 atm, 10 atm and 15 atm). The results obtained shows an increasing of chemical densities with the pressure in the mixture in conformity at Dalton's Law. the increasing of the pressure in the plasma retard chemical reactions because it disadvantages the dislocations that constitute dissociation and ionization reactions in the plasma.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000K
    AU  - Kohio Nièssan
    AU  - Kagoné Abdoul Karim
    AU  - Yaguibou Wêpari Charles
    AU  - Koalaga Zacharie
    AU  - Zougmoré François
    Y1  - 2020/10/12
    PY  - 2020
    N1  - https://doi.org/10.11648/j.nano.20200803.13
    DO  - 10.11648/j.nano.20200803.13
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 50
    EP  - 57
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.20200803.13
    AB  - This paper concern the calculation of equilibrium composition of plasma mixture Air-Water vapor and copper vapor in temperatures range 1000K to 20000 K. The plasma is suposed to be in local thermodynamic equilibrium. We used Gibbs free energy minimization method to access the different numerical densities of chemical species as a function of temperature. This data are very important to calculate thermodynamic properties, transport coefficients and modeling electrical arc in circuit breakers. The result shows that the influence of metallic copper vapor is important on equilibrium composition of plasma. In particular the densities of electron in the plasma increase with the percentage of copper vapor for the temperature inferior to 17000K. The increasing of electron densities increase electrical conductivity of plasma and limit the performance of circuit breakers. Also the electrical neutrality is made mainly between electron (e-) and Cu+ in low temperature (T < 12000K). We are studying in particular the evolution of the densities of the main chemical species created in this plasma as a function of pressure. We choose four values of pressure (1 atm, 5 atm, 10 atm and 15 atm). The results obtained shows an increasing of chemical densities with the pressure in the mixture in conformity at Dalton's Law. the increasing of the pressure in the plasma retard chemical reactions because it disadvantages the dislocations that constitute dissociation and ionization reactions in the plasma.
    VL  - 8
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Materials and Environment (LAME), Department of Physics, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Laboratory of Materials and Environment (LAME), Department of Physics, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Laboratory of Materials and Environment (LAME), Department of Physics, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Laboratory of Materials and Environment (LAME), Department of Physics, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso

  • Sections