The main purpose of this work is to calculate the radiative, dielectronic and total recombination of non-hydrogenic elements. We applied the photoionization codes to investigate the recombination coefficients. We have calculated radiative and dielectronic recombination coefficients of some elements at different temperatures and ionization stages. The results are obtained at low temperatures between 5,000 and 20,000 K and it shows that the dielectronic coefficients are not negligible relative to radiative recombination by assuming the solar abundances of H, He, C, N, O, Ne and S. We determined the total recombination coefficients of each element and compared them with previous works. Our calculations the radiative dielectric and total recombination coefficients of oxygen, nitrogen, carbon, neon and sulphur ions at a given temperature agree with the previous works.
Published in | American Journal of Astronomy and Astrophysics (Volume 5, Issue 4) |
DOI | 10.11648/j.ajaa.20170504.11 |
Page(s) | 42-49 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Photoionization, Radiative, Dielectronic Recombination Coefficients
[1] | P’equignot D., Petitjean P., &Boission C., 1991, A&A, 251, 680. |
[2] | Burgess A., 1965, ApJ, 17, 198. |
[3] | Tarter C. B., 1973, ApJ, 168, 313. |
[4] | Tarter C. B., 1971, ApJ, 168, 313. |
[5] | Aldrovandi S. M. V., and Pequigno D., 1973, A&A, 25, 137. |
[6] | Aldrovandi S. M. V., and Pequigno D., 1973, Rev. Bras. Fis. 4, 491. |
[7] | Gould R. J., 1978, ApJ, 219, 250. |
[8] | Ferland G. J., 2011, Hazy a brief introduction to cloudy, University of Kentucky internal report. |
[9] | Osterbrock D. E., 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, University of Science Book, California, Santa Crux. |
[10] | Susmita ChakravortyAjit K. Kembhavi, Martin Elvis, Gary Ferland and N. R. Badnell, 2008, MNRAS, 384, 24. |
[11] | Burgess A. and Seaton, M. J., 1960a, MNRAS, 120, 76. |
[12] | Sultana N., 1999, ApJS, 120, 131. |
[13] | Osterbrock D. E., 1974, Astrophysics of Gaseous Nebulae, San Francisco: Freeman. |
[14] | Woods D. T., Shull J. M., & Sarazin C. L., 1981, ApJ, 399, 401. |
[15] | Michael A. Dopita& Ralph S. Sutherland, 1999, Diffuse matter in the universe. The Australian National University, Can-berra. |
[16] | Anil K. Pradhan and Sultana N. Nahar, 2011, Atomic Astrophysics and Spectroscopy, United Kingdom at the University Press, Cambridge. |
[17] | Dopita M. A. and Sutherland R. S., 2001, Diffuse Matter in the Universe, Subtitle, Edition, Physics of Monograph. |
[18] | Shull J. M. & Steenberg, M. V., 1982, ApJ, 48, 95-107. |
[19] | Liu X., 2010, arxiv: 1001.3715v2 [astro.ph.GA]. The dark secrets of gaseous nebulae highlights from deep spectroscopy. |
[20] | Jon C. Weisheit, ApJ, 1973, 185, 877. |
[21] | Bates D. R. and Massey H. S. W., 1943. The negative ions of atomic and molecular oxygen. Philosophical Transactions and of the Royal Society of London, Series A, 239(806): 269-304. |
[22] | Massey H. S. W. and Bates D. R., 1942. The properties of neutral and ionized atomic oxygen influence on the upper atmosphere. Reports in Physics, 9(1), 62-74. |
[23] | Orban Z., Altun, A., Ka’llberg A., Simonsson, G., Andler A., Pa_al M., Blom P., La’fgren S., Trotsenko S., BAuhm & Schuch R., 2009 A & A 498, 909. |
[24] | Burgess A., 1964. Dielectronic recombination and the temperature of the solar corona. ApJ, 139, 776 |
[25] | Sultana N. Nahar and Anil K. Pradhan, 2006, ApJS, 162, 417. |
[26] | Fogel M., Bandell N. R., Glans P., Loch S. D., Madzunkov S., Abdel-NabySh. A., Pindzola M. S., & Schuch R., 2005, A&A, 442, 757 |
[27] | Altun Z., Yumak A., Bandell N. R., Loch S. D., Pindzola M. S., 2006, A&, 447, 1165. |
[28] | Drake G. W. F., 1996, in Drake G. W., ed., Atomic, Molecular, and Optical Physics Handbook. American Institute of Physics, Woodbury, New York, p. 154. |
[29] | Nussbaumer H. & Storey P. J., 1983, A&A, 126, 74. |
[30] | Sultana N. Nahar& Anil K. Pradhan, 1995, ApJ, 447, 966 |
[31] | Jacobs V. L., Davis J., Kepple P. C., and Blaha M., 1977b, Apj, 215, 690. |
[32] | Goharji A. A., 1988, Durham Thesis, Durham University |
[33] | Bandell N. R., 2005, A&A, 447, 389. |
[34] | Williams R. E., Jenkins E. B., Baldwin J. A., Zhang Y., Sharpee B., Lellegrini E., and Philips M., 2008, ApJ, 677, 1100-1119. |
APA Style
Belay Sitotaw Goshu. (2017). Recombination Coefficient of Heavy Elements Using Photoionization Modeling. American Journal of Astronomy and Astrophysics, 5(4), 42-49. https://doi.org/10.11648/j.ajaa.20170504.11
ACS Style
Belay Sitotaw Goshu. Recombination Coefficient of Heavy Elements Using Photoionization Modeling. Am. J. Astron. Astrophys. 2017, 5(4), 42-49. doi: 10.11648/j.ajaa.20170504.11
AMA Style
Belay Sitotaw Goshu. Recombination Coefficient of Heavy Elements Using Photoionization Modeling. Am J Astron Astrophys. 2017;5(4):42-49. doi: 10.11648/j.ajaa.20170504.11
@article{10.11648/j.ajaa.20170504.11, author = {Belay Sitotaw Goshu}, title = {Recombination Coefficient of Heavy Elements Using Photoionization Modeling}, journal = {American Journal of Astronomy and Astrophysics}, volume = {5}, number = {4}, pages = {42-49}, doi = {10.11648/j.ajaa.20170504.11}, url = {https://doi.org/10.11648/j.ajaa.20170504.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20170504.11}, abstract = {The main purpose of this work is to calculate the radiative, dielectronic and total recombination of non-hydrogenic elements. We applied the photoionization codes to investigate the recombination coefficients. We have calculated radiative and dielectronic recombination coefficients of some elements at different temperatures and ionization stages. The results are obtained at low temperatures between 5,000 and 20,000 K and it shows that the dielectronic coefficients are not negligible relative to radiative recombination by assuming the solar abundances of H, He, C, N, O, Ne and S. We determined the total recombination coefficients of each element and compared them with previous works. Our calculations the radiative dielectric and total recombination coefficients of oxygen, nitrogen, carbon, neon and sulphur ions at a given temperature agree with the previous works.}, year = {2017} }
TY - JOUR T1 - Recombination Coefficient of Heavy Elements Using Photoionization Modeling AU - Belay Sitotaw Goshu Y1 - 2017/09/28 PY - 2017 N1 - https://doi.org/10.11648/j.ajaa.20170504.11 DO - 10.11648/j.ajaa.20170504.11 T2 - American Journal of Astronomy and Astrophysics JF - American Journal of Astronomy and Astrophysics JO - American Journal of Astronomy and Astrophysics SP - 42 EP - 49 PB - Science Publishing Group SN - 2376-4686 UR - https://doi.org/10.11648/j.ajaa.20170504.11 AB - The main purpose of this work is to calculate the radiative, dielectronic and total recombination of non-hydrogenic elements. We applied the photoionization codes to investigate the recombination coefficients. We have calculated radiative and dielectronic recombination coefficients of some elements at different temperatures and ionization stages. The results are obtained at low temperatures between 5,000 and 20,000 K and it shows that the dielectronic coefficients are not negligible relative to radiative recombination by assuming the solar abundances of H, He, C, N, O, Ne and S. We determined the total recombination coefficients of each element and compared them with previous works. Our calculations the radiative dielectric and total recombination coefficients of oxygen, nitrogen, carbon, neon and sulphur ions at a given temperature agree with the previous works. VL - 5 IS - 4 ER -