Selectively inbred animal models for anxiety traits provide useful insights for the elucidation of the relevant pathophysiological mechanisms of anxiety disorders by modeling molecular pathology in a defined genetic background. However, little is currently known about the functional characteristics that distinguish high anxiety-related (HAB) from low anxiety-related (LAB) behaviors. Analytical integration of cingulate cortex (CC) synaptosomal proteomes of HAB and LAB mice revealed that the synaptic environment in the cingulate cortex of HAB animals is dominated by the stabilization and enlargement of existing excitatory dendritic spines, associated with increased high-frequency stimulation of excitatory glutamatergic synapses, enhanced control over the modulation of synaptic strength and relatively weakened inhibitory GABAergic control together with increased spontaneous synaptic activity in non-glutamatergic network members. This is coupled with increased oxidative phosphorylation (OXPHOS), enhanced fatty acid oxidation and ATP production in synaptic mitochondria. The mitochondrial effects of increased oxidative and ionic stress appear to be controlled through at least seven different mechanisms, while the mechanisms attached to the maintenance of mitochondrial structural integrity and protein homeostasis are significantly reinforced. Overall, this analysis describes a context characterized by excitatory long-term potentiation (LTP) maintenance, low de novo spine generation, significant neurotransmission imbalances and structural as well as metabolic adaptations to persistent synaptic mitochondrial Ca2+ loading and oxidative stress associated with the HAB phenotype
Published in | American Journal of Psychiatry and Neuroscience (Volume 2, Issue 3) |
DOI | 10.11648/j.ajpn.20140203.11 |
Page(s) | 25-42 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Anxiety Disorders, Cingulate Cortex, Trait Anxiety Mouse Model, Proteomics, Molecular Mechanism
[1] | Association AP: Diagnostic and statistical manual of mental disorders, vol. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013. |
[2] | Duraj M, Kurzbauer R: [Anesthesia of the celiac plexus in analgesia in cases of inoperable epigastric tumors]. Wiadomosci lekarskie 1985, 38(4):286-289. |
[3] | Kessler RC, Demler O, Frank RG, Olfson M, Pincus HA, Walters EE, Wang P, Wells KB, Zaslavsky AM: Prevalence and treatment of mental disorders, 1990 to 2003. The New England journal of medicine 2005, 352(24):2515-2523. |
[4] | Landgraf R, Kessler MS, Bunck M, Murgatroyd C, Spengler D, Zimbelmann M, Nussbaumer M, Czibere L, Turck CW, Singewald N et al: Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neuroscience and biobehavioral reviews 2007, 31(1):89-102. |
[5] | Jakubcakova V, Flachskamm C, Landgraf R, Kimura M: Sleep phenotyping in a mouse model of extreme trait anxiety. PloS one 2012, 7(7):e40625. |
[6] | Avrabos C, Sotnikov SV, Dine J, Markt PO, Holsboer F, Landgraf R, Eder M: Real-time imaging of amygdalar network dynamics in vitro reveals a neurophysiological link to behavior in a mouse model of extremes in trait anxiety. The Journal of neuroscience : the official journal of the Society for Neuroscience 2013, 33(41):16262-16267. |
[7] | Filiou MD, Zhang Y, Teplytska L, Reckow S, Gormanns P, Maccarrone G, Frank E, Kessler MS, Hambsch B, Nussbaumer M et al: Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biological psychiatry 2011, 70(11):1074-1082. |
[8] | Frank E, Kessler MS, Filiou MD, Zhang Y, Maccarrone G, Reckow S, Bunck M, Heumann H, Turck CW, Landgraf R et al: Stable isotope metabolic labeling with a novel N-enriched bacteria diet for improved proteomic analyses of mouse models for psychopathologies. PloS one 2009, 4(11):e7821. |
[9] | Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW: Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 2010, 31(8):1294-1301. |
[10] | Filiou MD, Turck CW: Psychiatric disorder biomarker discovery using quantitative proteomics. Methods in molecular biology 2012, 829:531-539. |
[11] | Iris F: Psychiatric systems medicine: closer at hand than anticipated but not with the expected portrait. Pharmacopsychiatry 2012, 45 Suppl 1:S12-21. |
[12] | Cross-Disorder Group of the Psychiatric Genomics C, Genetic Risk Outcome of Psychosis C: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013, 381(9875):1371-1379. |
[13] | Kwak S, Weiss JH: Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Current opinion in neurobiology 2006, 16(3):281-287. |
[14] | Bellone C, Luscher C: Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nature neuroscience 2006, 9(5):636-641. |
[15] | Clem RL, Huganir RL: Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 2010, 330(6007):1108-1112. |
[16] | Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME: Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008, 454(7200):118-121. |
[17] | Rabinowitch I, Segev I: Two opposing plasticity mechanisms pulling a single synapse. Trends in neurosciences 2008, 31(8):377-383. |
[18] | Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG: Synaptic scaling requires the GluR2 subunit of the AMPA receptor. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29(20):6479-6489. |
[19] | Dacheux D, Landrein N, Thonnus M, Gilbert G, Sahin A, Wodrich H, Robinson DR, Bonhivers M: A MAP6-related protein is present in protozoa and is involved in flagellum motility. PloS one 2012, 7(2):e31344. |
[20] | Gory-Faure S, Windscheid V, Bosc C, Peris L, Proietto D, Franck R, Denarier E, Job D, Andrieux A: STOP-like protein 21 is a novel member of the STOP family, revealing a Golgi localization of STOP proteins. The Journal of biological chemistry 2006, 281(38):28387-28396. |
[21] | Suzuki M, Mizuno A: A novel human Cl(-) channel family related to Drosophila flightless locus. The Journal of biological chemistry 2004, 279(21):22461-22468. |
[22] | Katoh H, Hiramoto K, Negishi M: Activation of Rac1 by RhoG regulates cell migration. Journal of cell science 2006, 119(Pt 1):56-65. |
[23] | Matthews CA, Shaw JE, Hooper JA, Young IG, Crouch MF, Campbell HD: Expression and evolution of the mammalian brain gene Ttyh1. Journal of neurochemistry 2007, 100(3):693-707. |
[24] | Crimins JL, Rocher AB, Peters A, Shultz P, Lewis J, Luebke JI: Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy. Acta neuropathologica 2011, 122(5):551-564. |
[25] | Rao VR, Finkbeiner S: NMDA and AMPA receptors: old channels, new tricks. Trends in neurosciences 2007, 30(6):284-291. |
[26] | Lisman JE, Zhabotinsky AM: A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 2001, 31(2):191-201. |
[27] | Lisman J, Schulman H, Cline H: The molecular basis of CaMKII function in synaptic and behavioural memory. Nature reviews Neuroscience 2002, 3(3):175-190. |
[28] | Yilmaz M, Gangopadhyay SS, Leavis P, Grabarek Z, Morgan KG: Phosphorylation at Ser26 in the ATP binding site of Calcium Calmodulin dependent Kinase II as a mechanism for switching off the kinase activity. Bioscience reports 2013. |
[29] | Pi HJ, Lisman JE: Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. The Journal of neuroscience : the official journal of the Society for Neuroscience 2008, 28(49):13132-13138. |
[30] | Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM: Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 1998, 280(5371):1940-1942. |
[31] | Ster J, Mateos JM, Grewe BF, Coiret G, Corti C, Corsi M, Helmchen F, Gerber U: Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(24):9993-9997. |
[32] | Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A: Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2012, 37(4):929-938. |
[33] | Klemmer P, Meredith RM, Holmgren CD, Klychnikov OI, Stahl-Zeng J, Loos M, van der Schors RC, Wortel J, de Wit H, Spijker S et al: Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype. The Journal of biological chemistry 2011, 286(29):25495-25504. |
[34] | Deng PY, Sojka D, Klyachko VA: Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011, 31(30):10971-10982. |
[35] | Ito H, Atsuzawa K, Sudo K, Di Stefano P, Iwamoto I, Morishita R, Takei S, Semba R, Defilippi P, Asano T et al: Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. Journal of neurochemistry 2008, 107(1):61-72. |
[36] | Lanore F, Blanchet C, Fejtova A, Pinheiro P, Richter K, Balschun D, Gundelfinger E, Mulle C: Impaired development of hippocampal mossy fibre synapses in mouse mutants for the presynaptic scaffold protein Bassoon. The Journal of physiology 2010, 588(Pt 12):2133-2145. |
[37] | Waldmeier PC, Kaupmann K, Urwyler S: Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release. Journal of neural transmission 2008, 115(10):1401-1411. |
[38] | Guetg N, Seddik R, Vigot R, Turecek R, Gassmann M, Vogt KE, Brauner-Osborne H, Shigemoto R, Kretz O, Frotscher M et al: The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29(5):1414-1423. |
[39] | Benarroch EE: GABAB receptors: structure, functions, and clinical implications. Neurology 2012, 78(8):578-584. |
[40] | Chalifoux JR, Carter AG: GABAB receptor modulation of synaptic function. Current opinion in neurobiology 2011, 21(2):339-344. |
[41] | Bowery NG: Historical perspective and emergence of the GABAB receptor. Advances in pharmacology 2010, 58:1-18. |
[42] | Schwindinger WF, Mirshahi UL, Baylor KA, Sheridan KM, Stauffer AM, Usefof S, Stecker MM, Mirshahi T, Robishaw JD: Synergistic roles for G-protein gamma3 and gamma7 subtypes in seizure susceptibility as revealed in double knock-out mice. The Journal of biological chemistry 2012, 287(10):7121-7133. |
[43] | Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM, Weinberger DR, Kleinman JE, Hyde TM: Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with development, schizophrenia, and affective disorders. The Journal of neuroscience : the official journal of the Society for Neuroscience 2012, 32(15):5216-5222. |
[44] | Vivar C, Gutierrez R: Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures. Hippocampus 2005, 15(3):281-284. |
[45] | Dziembowska M, Wlodarczyk J: MMP9: a novel function in synaptic plasticity. The international journal of biochemistry & cell biology 2012, 44(5):709-713. |
[46] | Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW: Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(49):19520-19525. |
[47] | Stefaniuk M, Swiech L, Dzwonek J, Lukasiuk K: Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. Journal of neurochemistry 2010, 115(5):1183-1194. |
[48] | Wang C, Michener CM, Belinson JL, Vaziri S, Ganapathi R, Sengupta S: Role of the 18:1 lysophosphatidic acid-ovarian cancer immunoreactive antigen domain containing 1 (OCIAD1)-integrin axis in generating late-stage ovarian cancer. Molecular cancer therapeutics 2010, 9(6):1709-1718. |
[49] | Kerrisk ME, Greer CA, Koleske AJ: Integrin alpha3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. The Journal of neuroscience : the official journal of the Society for Neuroscience 2013, 33(16):6742-6752. |
[50] | Lin ME, Herr DR, Chun J: Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins & other lipid mediators 2010, 91(3-4):130-138. |
[51] | Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN et al: LPA receptors: subtypes and biological actions. Annual review of pharmacology and toxicology 2010, 50:157-186. |
[52] | Kim JY, Oh MH, Bernard LP, Macara IG, Zhang H: The RhoG/ELMO1/Dock180 signaling module is required for spine morphogenesis in hippocampal neurons. The Journal of biological chemistry 2011, 286(43):37615-37624. |
[53] | Murakoshi H, Wang H, Yasuda R: Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 2011, 472(7341):100-104. |
[54] | Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H: Structure-stability-function relationships of dendritic spines. Trends in neurosciences 2003, 26(7):360-368. |
[55] | Aziziyeh AI, Li TT, Pape C, Pampillo M, Chidiac P, Possmayer F, Babwah AV, Bhattacharya M: Dual regulation of lysophosphatidic acid (LPA1) receptor signalling by Ral and GRK. Cellular signalling 2009, 21(7):1207-1217. |
[56] | Teodoro RO, Pekkurnaz G, Nasser A, Higashi-Kovtun ME, Balakireva M, McLachlan IG, Camonis J, Schwarz TL: Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. The EMBO journal 2013, 32(14):2039-2055. |
[57] | Ferro E, Trabalzini L: RalGDS family members couple Ras to Ral signalling and that's not all. Cellular signalling 2010, 22(12):1804-1810. |
[58] | Neyraud V, Aushev VN, Hatzoglou A, Meunier B, Cascone I, Camonis J: RalA and RalB proteins are ubiquitinated GTPases, and ubiquitinated RalA increases lipid raft exposure at the plasma membrane. The Journal of biological chemistry 2012, 287(35):29397-29405. |
[59] | Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML, Burstein E: Regulation of NF-kappaB activity by competition between RelA acetylation and ubiquitination. Oncogene 2012, 31(5):611-623. |
[60] | Suzuki K, Koike T: Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 2007, 147(3):599-612. |
[61] | Harting K, Knoll B: SIRT2-mediated protein deacetylation: An emerging key regulator in brain physiology and pathology. European journal of cell biology 2010, 89(2-3):262-269. |
[62] | McLennan H: The autoradiographic localization of L-[3h]glutamate in rat brain tissue. Brain research 1976, 115(1):139-144. |
[63] | Huang YH, Dykes-Hoberg M, Tanaka K, Rothstein JD, Bergles DE: Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 2004, 24(1):103-111. |
[64] | Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG: An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995, 375(6532):599-603. |
[65] | Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG: Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 1994, 14(9):5559-5569. |
[66] | Bloodgood BL, Sabatini BL: Ca(2+) signaling in dendritic spines. Current opinion in neurobiology 2007, 17(3):345-351. |
[67] | Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E: The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Archives of biochemistry and biophysics 2008, 476(1):65-74. |
[68] | Pottorf WJ, 2nd, Johanns TM, Derrington SM, Strehler EE, Enyedi A, Thayer SA: Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons. Journal of neurochemistry 2006, 98(5):1646-1656. |
[69] | Burette AC, Strehler EE, Weinberg RJ: "Fast" plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. The Journal of comparative neurology 2009, 512(4):500-513. |
[70] | LaCroix-Fralish ML, Mo G, Smith SB, Sotocinal SG, Ritchie J, Austin JS, Melmed K, Schorscher-Petcu A, Laferriere AC, Lee TH et al: The beta3 subunit of the Na+,K+-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain 2009, 144(3):294-302. |
[71] | Moseley AE, Williams MT, Schaefer TL, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB: Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 2007, 27(3):616-626. |
[72] | Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM et al: Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(1):311-316. |
[73] | Svichar N, Esquenazi S, Chen HY, Chesler M: Preemptive regulation of intracellular pH in hippocampal neurons by a dual mechanism of depolarization-induced alkalinization. The Journal of neuroscience : the official journal of the Society for Neuroscience 2011, 31(19):6997-7004. |
[74] | Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Tarakanov AO, Garriga P, Narvaez JA et al: Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Frontiers in physiology 2012, 3:136. |
[75] | Rubio ME, Soto F: Distinct Localization of P2X receptors at excitatory postsynaptic specializations. The Journal of neuroscience : the official journal of the Society for Neuroscience 2001, 21(2):641-653. |
[76] | Gabaldon T, Rainey D, Huynen MA: Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). Journal of molecular biology 2005, 348(4):857-870. |
[77] | Cardol P: Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: a highly conserved subunit composition highlighted by mining of protein databases. Biochimica et biophysica acta 2011, 1807(11):1390-1397. |
[78] | Suhane S, Berel D, Ramanujan VK: Biomarker signatures of mitochondrial NDUFS3 in invasive breast carcinoma. Biochemical and biophysical research communications 2011, 412(4):590-595. |
[79] | Patton WF, Schulenberg B, Steinberg TH: Two-dimensional gel electrophoresis; better than a poke in the ICAT? Current opinion in biotechnology 2002, 13(4):321-328. |
[80] | Gottlieb E, Tomlinson IP: Mitochondrial tumour suppressors: a genetic and biochemical update. Nature reviews Cancer 2005, 5(11):857-866. |
[81] | Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK: Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 1998, 281(5373):64-71. |
[82] | Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S: The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 1996, 272(5265):1136-1144. |
[83] | Lazarou M, Smith SM, Thorburn DR, Ryan MT, McKenzie M: Assembly of nuclear DNA-encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. The FEBS journal 2009, 276(22):6701-6713. |
[84] | Gibbons C, Montgomery MG, Leslie AG, Walker JE: The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Nature structural biology 2000, 7(11):1055-1061. |
[85] | Jonckheere AI, Smeitink JA, Rodenburg RJ: Mitochondrial ATP synthase: architecture, function and pathology. Journal of inherited metabolic disease 2012, 35(2):211-225. |
[86] | Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N et al: A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337(6090):96-100. |
[87] | Mayr JA, Merkel O, Kohlwein SD, Gebhardt BR, Bohles H, Fotschl U, Koch J, Jaksch M, Lochmuller H, Horvath R et al: Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. American journal of human genetics 2007, 80(3):478-484. |
[88] | Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S: The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB life 2013, 65(3):180-190. |
[89] | McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U: Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochemical pharmacology 2006, 71(4):399-407. |
[90] | Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML: The redox switch/redox coupling hypothesis. Neurochemistry international 2006, 48(6-7):523-530. |
[91] | Erecinska M, Silver IA: Metabolism and role of glutamate in mammalian brain. Progress in neurobiology 1990, 35(4):245-296. |
[92] | Bakken IJ, White LR, Aasly J, Unsgard G, Sonnewald U: [U-13C] aspartate metabolism in cultured cortical astrocytes and cerebellar granule neurons studied by NMR spectroscopy. Glia 1998, 23(3):271-277. |
[93] | Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, Hager J, Rousseau F, Curatolo P, Manzi B et al: Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Molecular psychiatry 2010, 15(1):38-52. |
[94] | Plaitakis A, Shashidharan P: Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson's disease. Journal of neurology 2000, 247 Suppl 2:II25-35. |
[95] | Gellerich FN, Gizatullina Z, Trumbekaite S, Korzeniewski B, Gaynutdinov T, Seppet E, Vielhaber S, Heinze HJ, Striggow F: Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. The Biochemical journal 2012, 443(3):747-755. |
[96] | Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M: The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Sub-cellular biochemistry 2007, 46:27-65. |
[97] | Guzun R, Saks V: Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo. International journal of molecular sciences 2010, 11(3):982-1019. |
[98] | Schlattner U, Tokarska-Schlattner M, Wallimann T: Mitochondrial creatine kinase in human health and disease. Biochimica et biophysica acta 2006, 1762(2):164-180. |
[99] | Tepp K, Shevchuk I, Chekulayev V, Timohhina N, Kuznetsov AV, Guzun R, Saks V, Kaambre T: High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units. Biochimica et biophysica acta 2011, 1807(12):1549-1561. |
[100] | Becker HM, Klier M, Schuler C, McKenna R, Deitmer JW: Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(7):3071-3076. |
[101] | Dzeja PP, Terzic A: Phosphotransfer networks and cellular energetics. The Journal of experimental biology 2003, 206(Pt 12):2039-2047. |
[102] | Hyde R, Taylor PM, Hundal HS: Amino acid transporters: roles in amino acid sensing and signalling in animal cells. The Biochemical journal 2003, 373(Pt 1):1-18. |
[103] | Rodriguez-Rodriguez P, Almeida A, Bolanos JP: Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochemistry international 2013, 62(5):750-756. |
[104] | Mayr JA, Haack TB, Graf E, Zimmermann FA, Wieland T, Haberberger B, Superti-Furga A, Kirschner J, Steinmann B, Baumgartner MR et al: Lack of the mitochondrial protein acylglycerol kinase causes Sengers syn-drome. American journal of human genetics 2012, 90(2):314-320. |
[105] | Lin HY, Lai RH, Lin ST, Lin RC, Wang MJ, Lin CC, Lee HC, Wang FF, Chen JY: Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell death and differentiation 2013, 20(1):139-153. |
[106] | Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, Ho SL: Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Translational neurodegeneration 2012, 1(1):3. |
[107] | Katz C, Zaltsman-Amir Y, Mostizky Y, Kollet N, Gross A, Friedler A: Molecular basis of the interaction between proapoptotic truncated BID (tBID) protein and mitochondrial carrier homologue 2 (MTCH2) protein: key players in mitochondrial death pathway. The Journal of biological chemistry 2012, 287(18):15016-15023. |
[108] | Liu Y, Gou LS, Tian X, Fu XB, Ling X, Sun LY, Lan N, Li S, Yin XX: Protective effects of luteolin on cognitive impairments induced by psychological stress in mice. Experimental biology and medicine 2013, 238(4):418-425. |
[109] | Zhang L, Zhang HQ, Liang XY, Zhang HF, Zhang T, Liu FE: Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: Role of oxidative stress, BDNF and CaMKII. Behavioural brain research 2013, 256:72-81. |
[110] | Behr GA, da Motta LL, de Oliveira MR, Oliveira MW, Hoff ML, Silvestrin RB, Moreira JC: Decreased anxiety-like behavior and locomotor/exploratory activity, and modulation in hypothalamus, hippocampus, and frontal cortex redox profile in sexually receptive female rats after short-term exposure to male chemical cues. Behavioural brain research 2009, 199(2):263-270. |
[111] | Corniola R, Zou Y, Leu D, Fike JR, Huang TT: Paradoxical relationship between Mn superoxide dismutase deficiency and radiation-induced cognitive defects. PloS one 2012, 7(11):e49367. |
[112] | Kim do Y, Vallejo J, Rho JM: Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. Journal of neurochemistry 2010, 114(1):130-141. |
[113] | McNally MA, Hartman AL: Ketone bodies in epilepsy. Journal of neuro-chemistry 2012, 121(1):28-35. |
[114] | Seedorf U, Ellinghaus P, Roch Nofer J: Sterol carrier protein-2. Biochimica et biophysica acta 2000, 1486(1):45-54. |
[115] | Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE et al: MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(36):14342-14347. |
[116] | Ibrahim WH, Habib HM, Kamal H, St Clair DK, Chow CK: Mitochondrial superoxide mediates labile iron level: evidence from Mn-SOD-transgenic mice and heterozygous knockout mice and isolated rat liver mitochondria. Free radical biology & medicine 2013, 65C:143-149. |
[117] | Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, Askew GR, Simcox JA, McClain DA, Li C et al: MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nature medicine 2012, 18(10):1539-1549. |
[118] | Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE: MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(13):5318-5323. |
[119] | Zuris JA, Ali SS, Yeh H, Nguyen TA, Nechushtai R, Paddock ML, Jennings PA: NADPH inhibits [2Fe-2S] cluster protein transfer from diabetes drug target MitoNEET to an apo-acceptor protein. The Journal of biological chemistry 2012, 287(15):11649-11655. |
[120] | Fowler SL, Akins M, Zhou H, Figeys D, Bennett SA: The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. Journal of proteome research 2013, 12(6):2597-2610. |
[121] | Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, Sheftel AD, Ponka P: Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(24):10775-10782. |
[122] | Altamura S, Muckenthaler MU: Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. Journal of Alzheimer's disease : JAD 2009, 16(4):879-895. |
[123] | Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK: Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson's disease. Analytical chemistry 2009, 81(18):7823-7828. |
[124] | Plitzko B, Ott G, Reichmann D, Henderson CJ, Wolf CR, Mendel R, Bittner F, Clement B, Havemeyer A: The involvement of mitochondrial amidoxime reducing components 1 and 2 and mitochondrial cytochrome b5 in N-reductive metabolism in human cells. The Journal of biological chemistry 2013, 288(28):20228-20237. |
[125] | Trimmer PA, Borland MK, Keeney PM, Bennett JP, Jr., Parker WD, Jr.: Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. Journal of neurochemistry 2004, 88(4):800-812. |
[126] | Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G: Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. American journal of physiology Cell physiology 2011, 300(3):C707-720. |
[127] | Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB: Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 2004, 24(24):5611-5622. |
[128] | Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N: Calcium-dependent spontaneously reversible remodeling of brain mitochondria. The Journal of biological chemistry 2006, 281(49):37547-37558. |
[129] | Waldeck-Weiermair M, Jean-Quartier C, Rost R, Khan MJ, Vishnu N, Bondarenko AI, Imamura H, Malli R, Graier WF: Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. The Journal of biological chemistry 2011, 286(32):28444-28455. |
[130] | Rottlaender D, Boengler K, Wolny M, Michels G, Endres-Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G et al: Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. The Journal of clinical investigation 2010, 120(5):1441-1453. |
[131] | Boengler K, Ungefug E, Heusch G, Leybaert L, Schulz R: Connexin 43 impacts on mitochondrial potassium uptake. Frontiers in pharmacology 2013, 4:73. |
[132] | Colombini M: VDAC: the channel at the interface between mitochondria and the cytosol. Molecular and cellular biochemistry 2004, 256-257(1-2):107-115. |
[133] | Pastorino JG, Hoek JB: Regulation of hexokinase binding to VDAC. Journal of bioenergetics and biomembranes 2008, 40(3):171-182. |
[134] | Shoshan-Barmatz V, Keinan N, Zaid H: Uncovering the role of VDAC in the regulation of cell life and death. Journal of bioenergetics and biomembranes 2008, 40(3):183-191. |
[135] | Tan W, Colombini M: VDAC closure increases calcium ion flux. Biochimica et biophysica acta 2007, 1768(10):2510-2515. |
[136] | Gincel D, Shoshan-Barmatz V: Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. Journal of bioenergetics and biomembranes 2004, 36(2):179-186. |
[137] | Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J: Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir : the ACS journal of surfaces and colloids 2007, 23(7):3898-3905. |
[138] | Gincel D, Silberberg SD, Shoshan-Barmatz V: Modulation of the voltage-dependent anion channel (VDAC) by glutamate. Journal of bioenergetics and biomembranes 2000, 32(6):571-583. |
[139] | Tikunov A, Johnson CB, Pediaditakis P, Markevich N, Macdonald JM, Lemasters JJ, Holmuhamedov E: Closure of VDAC causes oxidative stress and accelerates the Ca(2+)-induced mitochondrial permeability transition in rat liver mitochondria. Archives of biochemistry and biophysics 2010, 495(2):174-181. |
[140] | Patel JC, Rice ME: Classification of H(2)O(2) as a neuromodulator that regulates striatal dopamine release on a subsecond time scale. ACS chemical neuroscience 2012, 3(12):991-1001. |
[141] | Griparic L, Kanazawa T, van der Bliek AM: Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. The Journal of cell biology 2007, 178(5):757-764. |
[142] | Merkwirth C, Martinelli P, Korwitz A, Morbin M, Bronneke HS, Jordan SD, Rugarli EI, Langer T: Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration. PLoS genetics 2012, 8(11):e1003021. |
[143] | Liesa M, Palacin M, Zorzano A: Mitochondrial dynamics in mammalian health and disease. Physiological reviews 2009, 89(3):799-845. |
[144] | Zerbes RM, Bohnert M, Stroud DA, von der Malsburg K, Kram A, Oeljeklaus S, Warscheid B, Becker T, Wiedemann N, Veenhuis M et al: Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains. Journal of molecular biology 2012, 422(2):183-191. |
[145] | Zerbes RM, van der Klei IJ, Veenhuis M, Pfanner N, van der Laan M, Bohnert M: Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Biological chemistry 2012, 393(11):1247-1261. |
[146] | Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S et al: MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Molecular biology of the cell 2012, 23(2):247-257. |
[147] | Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS: ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. The Journal of biological chemistry 2011, 286(4):2918-2932. |
[148] | Ott C, Ross K, Straub S, Thiede B, Gotz M, Goosmann C, Krischke M, Mueller MJ, Krohne G, Rudel T et al: Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Molecular and cellular biology 2012, 32(6):1173-1188. |
[149] | Park YU, Jeong J, Lee H, Mun JY, Kim JH, Lee JS, Nguyen MD, Han SS, Suh PG, Park SK: Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(41):17785-17790. |
[150] | Weber TA, Koob S, Heide H, Wittig I, Head B, van der Bliek A, Brandt U, Mittelbronn M, Reichert AS: APOOL is a cardiolipin-binding constituent of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. PloS one 2013, 8(5):e63683. |
[151] | An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS: CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. The Journal of biological chemistry 2012, 287(10):7411-7426. |
[152] | Rone MB, Liu J, Blonder J, Ye X, Veenstra TD, Young JC, Papadopoulos V: Targeting and insertion of the cholesterol-binding translocator protein into the outer mitochondrial membrane. Biochemistry 2009, 48(29):6909-6920. |
[153] | Thornton N, Stroud DA, Milenkovic D, Guiard B, Pfanner N, Becker T: Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. Journal of molecular biology 2010, 396(3):540-549. |
[154] | Endo T, Yamamoto H, Esaki M: Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. Journal of cell science 2003, 116(Pt 16):3259-3267. |
[155] | Rehling P, Brandner K, Pfanner N: Mitochondrial import and the twin-pore translocase. Nature reviews Molecular cell biology 2004, 5(7):519-530. |
[156] | Zhang Y, Deng H, Zhao Q, Li SJ: Interaction of presequence peptides with human translocase of inner membrane of mitochondria Tim23. Biochemical and biophysical research communications 2013, 437(2):292-299. |
[157] | Sinha D, Joshi N, Chittoor B, Samji P, D'Silva P: Role of Magmas in protein transport and human mitochondria biogenesis. Human molecular genetics 2010, 19(7):1248-1262. |
[158] | Tagliati F, Gentilin E, Buratto M, Mole D, degli Uberti EC, Zatelli MC: Magmas, a gene newly identified as overexpressed in human and mouse ACTH-secreting pituitary adenomas, protects pituitary cells from apoptotic stimuli. Endocrinology 2010, 151(10):4635-4642. |
[159] | Li Z, Sheng M: Some assembly required: the development of neuronal synapses. Nature reviews Molecular cell biology 2003, 4(11):833-841. |
[160] | Palmieri F: Diseases caused by defects of mitochondrial carriers: a review. Biochimica et biophysica acta 2008, 1777(7-8):564-578. |
[161] | Broer S, Palacin M: The role of amino acid transporters in inherited and acquired diseases. The Biochemical journal 2011, 436(2):193-211. |
[162] | Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, Allen KN: Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein science : a publication of the Protein Society 2004, 13(12):3077-3084. |
[163] | Lehninger AL, Nelson DL, Cox MM: Principles of biochemistry, 2nd ed. 1993. http://www.bioinfo.org.cn/book/biochemistry/chapt18/sim5.htm. |
[164] | Dudek J, Rehling P, van der Laan M: Mitochondrial protein import: common principles and physiological networks. Biochimica et biophysica acta 2013, 1833(2):274-285. |
APA Style
François Iris, Michaela Filiou, Christoph Wilhelm Turck. (2014). Differential Proteomics Analyses Reveal Anxiety-Associated Molecular and Cellular Mechanisms in Cingulate Cortex Synapses. American Journal of Psychiatry and Neuroscience, 2(3), 25-42. https://doi.org/10.11648/j.ajpn.20140203.11
ACS Style
François Iris; Michaela Filiou; Christoph Wilhelm Turck. Differential Proteomics Analyses Reveal Anxiety-Associated Molecular and Cellular Mechanisms in Cingulate Cortex Synapses. Am. J. Psychiatry Neurosci. 2014, 2(3), 25-42. doi: 10.11648/j.ajpn.20140203.11
@article{10.11648/j.ajpn.20140203.11, author = {François Iris and Michaela Filiou and Christoph Wilhelm Turck}, title = {Differential Proteomics Analyses Reveal Anxiety-Associated Molecular and Cellular Mechanisms in Cingulate Cortex Synapses}, journal = {American Journal of Psychiatry and Neuroscience}, volume = {2}, number = {3}, pages = {25-42}, doi = {10.11648/j.ajpn.20140203.11}, url = {https://doi.org/10.11648/j.ajpn.20140203.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpn.20140203.11}, abstract = {Selectively inbred animal models for anxiety traits provide useful insights for the elucidation of the relevant pathophysiological mechanisms of anxiety disorders by modeling molecular pathology in a defined genetic background. However, little is currently known about the functional characteristics that distinguish high anxiety-related (HAB) from low anxiety-related (LAB) behaviors. Analytical integration of cingulate cortex (CC) synaptosomal proteomes of HAB and LAB mice revealed that the synaptic environment in the cingulate cortex of HAB animals is dominated by the stabilization and enlargement of existing excitatory dendritic spines, associated with increased high-frequency stimulation of excitatory glutamatergic synapses, enhanced control over the modulation of synaptic strength and relatively weakened inhibitory GABAergic control together with increased spontaneous synaptic activity in non-glutamatergic network members. This is coupled with increased oxidative phosphorylation (OXPHOS), enhanced fatty acid oxidation and ATP production in synaptic mitochondria. The mitochondrial effects of increased oxidative and ionic stress appear to be controlled through at least seven different mechanisms, while the mechanisms attached to the maintenance of mitochondrial structural integrity and protein homeostasis are significantly reinforced. Overall, this analysis describes a context characterized by excitatory long-term potentiation (LTP) maintenance, low de novo spine generation, significant neurotransmission imbalances and structural as well as metabolic adaptations to persistent synaptic mitochondrial Ca2+ loading and oxidative stress associated with the HAB phenotype}, year = {2014} }
TY - JOUR T1 - Differential Proteomics Analyses Reveal Anxiety-Associated Molecular and Cellular Mechanisms in Cingulate Cortex Synapses AU - François Iris AU - Michaela Filiou AU - Christoph Wilhelm Turck Y1 - 2014/08/20 PY - 2014 N1 - https://doi.org/10.11648/j.ajpn.20140203.11 DO - 10.11648/j.ajpn.20140203.11 T2 - American Journal of Psychiatry and Neuroscience JF - American Journal of Psychiatry and Neuroscience JO - American Journal of Psychiatry and Neuroscience SP - 25 EP - 42 PB - Science Publishing Group SN - 2330-426X UR - https://doi.org/10.11648/j.ajpn.20140203.11 AB - Selectively inbred animal models for anxiety traits provide useful insights for the elucidation of the relevant pathophysiological mechanisms of anxiety disorders by modeling molecular pathology in a defined genetic background. However, little is currently known about the functional characteristics that distinguish high anxiety-related (HAB) from low anxiety-related (LAB) behaviors. Analytical integration of cingulate cortex (CC) synaptosomal proteomes of HAB and LAB mice revealed that the synaptic environment in the cingulate cortex of HAB animals is dominated by the stabilization and enlargement of existing excitatory dendritic spines, associated with increased high-frequency stimulation of excitatory glutamatergic synapses, enhanced control over the modulation of synaptic strength and relatively weakened inhibitory GABAergic control together with increased spontaneous synaptic activity in non-glutamatergic network members. This is coupled with increased oxidative phosphorylation (OXPHOS), enhanced fatty acid oxidation and ATP production in synaptic mitochondria. The mitochondrial effects of increased oxidative and ionic stress appear to be controlled through at least seven different mechanisms, while the mechanisms attached to the maintenance of mitochondrial structural integrity and protein homeostasis are significantly reinforced. Overall, this analysis describes a context characterized by excitatory long-term potentiation (LTP) maintenance, low de novo spine generation, significant neurotransmission imbalances and structural as well as metabolic adaptations to persistent synaptic mitochondrial Ca2+ loading and oxidative stress associated with the HAB phenotype VL - 2 IS - 3 ER -