2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.
Published in | Science Journal of Chemistry (Volume 7, Issue 2) |
DOI | 10.11648/j.sjc.20190702.12 |
Page(s) | 39-48 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Enantioselective Studies, 2, 2’, 3, 5’, 6-Pentachlorobiphenyl, Chiralcel OJ - H, Liquid Chromatography
[1] | S. W. Smith, Toxicol. Sci. 110, 4 (2009). |
[2] | S. Dai, C. S Wong, J. Qiu, M. Wang, T. Chai, L. Fang and S. Yang, J. Hazard. Mat. 280, 612 (2014). |
[3] | L. A. Nguye, H. He and C. Pham-Huy, Int. J. Biomed. Sci. 2, 85 (2006). |
[4] | L. J. Jackson and D. E Schindler, Environ. Sci. Technol. 30, 1861 (1996). |
[5] | J. L. Jacobson, S. W Jacobson and H. E. B. Humphrey, J. Pediatr. 116, 38 (1990). |
[6] | Agency for Toxic Substances and Disease Registry, Toxicological Profile for Polychlorinated Biphenyls (PCBs). (U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2000). |
[7] | G. P. Blanch, A. Glausch, V. Schurig, R. Serrano and M. Gonzale, J. Sep. Sci. 19, 392 (1996). |
[8] | H. J. Lehmler, S. J. Harrad, H. Hühnerfuss, I. Kania-Korwel, C. M. Lee, Z. Lu and C. S. Wong, Environ. Sci. Technol. 44, 2757 (2009). |
[9] | C. S. Wong, A. W. Garrison, P. D. Smith and W. T. Foreman, Environ. Sci. Technol. 35, 2448 (2001). |
[10] | L. Karasek., J. Hajslova, J. Rosmus and H. Huhnerfuss, Chemosphere 67, S22 (2007). |
[11] | A. Christoforidis, N. Stamatis, K. Schmieder and E. Tsachalidis, Chemosphere 70, 694 (2011). |
[12] | V. D. Dang, D. M. Walter and C. M. Lee, Environ. Sci. Technol. 44, 2836 (2010). |
[13] | X. Wu, A. Pramanik, M. W. Duffel, E. G. Hrycay, S. M. Bandiera, H. J. Lehmler and I. Kania-Korwel, Chem. Res. Toxicol. 24, 2249 (2011). |
[14] | M. S. Ross, E. L. Pulster, M. B. Ejsmont, E. A. Chow, C. M. Hessel, K. A. Maruya and C. S Wong, Mar. Pollut. 63, 548 (2011). |
[15] | M. Püttmann, F. Oesch and L. W. Robertson, Chemosphere 15, 2061 (1986). |
[16] | P. Haglund, Chemosphere 32, 2133 (1996). |
[17] | U. Pakdeesusuk, W. J. Jones, C. M. Lee, A. W. Garrison, W. L. O’Niell, D. L. Freedman, J. T. Coates and C. S. Wong, Environ. Sci. Technol. 37, 1100 (2003). |
[18] | M. Moo-Young, Comprehensive Biotechnology, 2nd ed (Elsevier, 2011). |
[19] | L. E. Rodman, S. I. Shedlofsky, A. Mannschreck, M. Püttmann, A. T. Swim and L. W. Robertson, Biochem. Pharmacol. 41, 915 (1991). |
[20] | H. J. Lehmler, L. W. Robertsona, A. W. Garrison, P. R. Rao and S. Kodavanti, Toxicol. Lett., 156, 391 (2005). |
[21] | J. Gafni, P. W. Wong and I. N. Pessah, Toxicol. Sci. 77, 72 (2004). |
[22] | G. A Wayman, D. Yang, D. D Bose, A. Lesiak, V. Ledoux, D. Bruun, I. N. Pessah and P. J. Leine, Environ. Health Perspect. 120, 997 (2012). |
[23] | A. Lesiak, M. Zhu, H. Chen, S. M. Appleyard, S. Impey, P. J. Lein and G. A. Wayman, J. Neurosci. 34, 717 (2014). |
[24] | N. Xu, P. Mu, Z. Yin, Q. Jia, S. Yang, Y. Qian and J. Qiu, PLoS ONE 11, e0160584 (2016). |
[25] | W. Feng, J. Zheng, G. Robin, Y. Dong, M. Ichikawa, Y. Inoue, T. Mori, T. Nakano and I. N. Pessah, Environ. Sci. Technol. DOI: 10.1021/acs.est.7b04446, (2017). |
[26] | N. Xu, P. Mu, Q. Jia, T. Chai, Z. Yin, S. Yang and J. Qiu, Chinese J. Anal. Chem. 34, 795 (2015) [In Chinese]. |
[27] | S. K. Maddi, S. Mohan, C. Ega, C. Rao, M. Yamasani and G. K. Scriba, J. Sep. Sci. 30, 1875 (2007). |
[28] | W. Lao and J. Gan, J. Chromatogr. A. 1117, 184 (2006). |
[29] | R. Bently, Arch. Biochem. Biophys. 414 (1), 1 (2003). |
[30] | M. Lämmerhofer, J. Chromatogr. A. 1217 (6), 814 (2010). |
[31] | H. Y. Aboul-Enein and I. Ali, Chiral Separations by Liquid Chromatography and Related Technologies (CRC Press, Boca Raton, FL, 2003). |
[32] | Y. Okamoto and T. Ikai., Chem. Soc. Rev. 37, 2593 (2008). |
[33] | J. Goossens, C. Foulon, A. L. Villard, J. Y. Puy, I. Lefebvre, P. Christian, C. Vaccher and J. P. Bonte, Biomed. Chromatogr. 19, 415 (2005). |
[34] | L. Zhou, C. Welch, C. Lee, X. Gong, V. Antonucci and Z. Ge, J. Pharm. Biomed. Anal. 49, 964 (2009). |
[35] | A. Zhang, W. Gao, B. Ma, L. Jin and C. Lin, Anal. Bioanal. Chem. 403, 2665 (2012). |
[36] | H. Pham‐Tuan, C. Larsson, F. Hoffmann, A. Bergman, M. Fröba and H. Hühnerfuss Chirality 17, 266 (2005). |
[37] | S. Reich and V. Schurig, GIT Spezial. Sep. 16, 14 (1999) [In German]. |
[38] | A. K. Badu-Tawiah (2010). Retrieved from fromhttps://knowledge.library.iup.edu/cgi/viewcontent.cgi?article=1928&context=etd |
[39] | W. L. Champion, J. Lee, A. W. Garrison, J. C. DiMarco, A. Matabe, K. B. Prickett, J. Chromatogr. A. 1024 (2004). |
[40] | G. K. Scriba, Chromatographia 75, 815 (2012). |
[41] | I. W. Wainer, M. C. Alembik and E. Smith, J. Chromatogr. A. 388, 65 (1987). |
[42] | International Conference on Harmonisation (ICH) Steering Committee. ICH Q2B Validation of Analytical Procedures: Methodology. (CPMP/ICH/281/95) (European Agency for the Evaluation of Medicinal Products, International Commission on Harmonisation, London, 1996). |
[43] | D. Frühauf and M. Juz, J. Chromatogr. A. 1269, 242 (2012). |
APA Style
Prabha Ranasinghe, Christopher Olivares, William Champion Jr, Cindy Lee. (2019). Atropisomeric Separation of PCB-95 by HPLC. Science Journal of Chemistry, 7(2), 39-48. https://doi.org/10.11648/j.sjc.20190702.12
ACS Style
Prabha Ranasinghe; Christopher Olivares; William Champion Jr; Cindy Lee. Atropisomeric Separation of PCB-95 by HPLC. Sci. J. Chem. 2019, 7(2), 39-48. doi: 10.11648/j.sjc.20190702.12
AMA Style
Prabha Ranasinghe, Christopher Olivares, William Champion Jr, Cindy Lee. Atropisomeric Separation of PCB-95 by HPLC. Sci J Chem. 2019;7(2):39-48. doi: 10.11648/j.sjc.20190702.12
@article{10.11648/j.sjc.20190702.12, author = {Prabha Ranasinghe and Christopher Olivares and William Champion Jr and Cindy Lee}, title = {Atropisomeric Separation of PCB-95 by HPLC}, journal = {Science Journal of Chemistry}, volume = {7}, number = {2}, pages = {39-48}, doi = {10.11648/j.sjc.20190702.12}, url = {https://doi.org/10.11648/j.sjc.20190702.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20190702.12}, abstract = {2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.}, year = {2019} }
TY - JOUR T1 - Atropisomeric Separation of PCB-95 by HPLC AU - Prabha Ranasinghe AU - Christopher Olivares AU - William Champion Jr AU - Cindy Lee Y1 - 2019/06/29 PY - 2019 N1 - https://doi.org/10.11648/j.sjc.20190702.12 DO - 10.11648/j.sjc.20190702.12 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 39 EP - 48 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20190702.12 AB - 2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness. VL - 7 IS - 2 ER -